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Chapter

Introduction

The electron has both an intrinsic electric field and an intrinsic magnetic field.

The electron’s intrinsic electromagnetic field has both energy and angular momentum.
In our book, we have the assumption that the electron has the electromagnetic origin,
the electron spin is the electron’s electromagnetic field angular momentum, and the
electron’s self-energy is the electron’s electromagnetic field energy.

The simplest model of electron spin is a spinning electrically charged ball,
similar to the earth rotating about its own axis. In this model, the electron’s rest
energy equals the electrostatic potential energy of a sphere of charge e with radius 7:

2
m.c? = e (1.1)

=
4re,r,

In which 7, is the classical radius of the electron, m, is the electron’s mass.

Combine electron mass m, with radius 7,, and we get electron spin angular
momentum:

— :% (1.2)

In which v is the classical velocity for electron spin.

Then we can obtain the electron’s classical velocity:

V= i (1.3)
mero
Combine this with equation (1.1), thus:
drg,c’h
_ o (1.4)
e
And so:
N (1.5)
a

In which « is fine structure constant:



B 4reyhc (1.6)
As we know:
g~ (1.7)
137
Therefore:
Y 2137 (1.8)

C

Based on the above model of electron spin, the classical electron velocity is
much greater than the velocity of light! Why did the spinning electric charge ball
model fail for the electron spin? The basic assumption of the above electron spin
model is that the electron’s mass originates from electric field energy.

In our book, we have an assumption that the electron has electromagnetic
origin. The electron’s self-energy is the electron’s electromagnetic field energy,
which mainly comes from electron magnetic field energy, in comparison to the
electron’s magnetic field energy, the electron’s electric field energy is much smaller.
This is one of the major reasons why the above electron spin model failed.

We no longer regard the electron as a point-like particle. Instead, we assume
that electrons have internal structure; inside the electron it has continuum spherical
distribution of both electric charge and magnetic charge. Based upon the charge
distribution, and also according to the Gauss Laws for electric field and magnetic
field, we calculate the electric field and magnetic field distribution inside the electron,
and then we calculate electromagnetic field energy and angular momentum of the
electron.

Then we make the assumption that both the electron mass and spin have
electromagnetic origin. Thus we obtain the electron’s self-energy from the
electromagnetic field energy, and the electron spin from the electron’s
electromagnetic field angular momentum.

Then we extend our electron’s electromagnetic model to the proton and
neutron, the proton and neutron also have electromagnetic origin; and we continue our
electromagnetic model to the hydrogen and helium atoms in our book.

In our book, we also provide a possible solution for the hydrogen atom
spectrum, in which the hydrogen atom spectrum is regarded as the hydrogen
electromagnetic field stationary wave energy spectrum.

The particles that comprise all physical materials include electrons, protons
and neutrons; all of which have electromagnetic origin. Therefore, all materials have
electromagnetic origin.
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The electric charge distribution
inside of the electron.

We no longer regard the electron as a point-like particle. The electron has an
internal structure, and the electric charge inside the electron has continuum
distribution.

Here is one of our most basic assumptions about the electron; the electric charge
distribution inside of the electron has the following equation:

pu(r,0)=——— L exp(=D)sing 2.1)
T r a

e e

We use the spherical polar coordinates in our book, in which r is the radial
coordinate, & is the polar angle, e is the electric charge of the electron, a, is the

electron radius constant.

By integrating the electric charge density equation (2.1), we can find the volume
electric charge:

0.(r,0) = [ p.(r,0)ar’ (2.2)

In which dr’ = 2r* sin 8d6dr , thus:

0.(r.0)=-[ %l exp(— ) sin 027> sin Gd Odr (2.3)
v T ae ae
0.(r,0)=-2 [ =exp(-d()sin? 0d6 (2.4)
s V ae ae ae
r 0
0.(r,0) == L exp(-ya (i sin® 0d6] (2.5)
T 0 ae ae ae 0
0.(,6) = —e[l — (14 -y exp(=—L)] - (0 - Lsin 20) (2.6)
a, a, 7w 2

The equation (2.6) is the electric charge space distribution equation.
From equation (2.6), we find out that:
When 6 = r, therefore:



0, (r,7) = —e[l - (1+ ) exp(——)] (2.7)
ae a,

e

As we can see, the electric charge distribution is a kind of cumulative gamma
distribution [B]

Equation (2.7) is the electric charge equation within the sphere of radius r.
When r — oo, thus:

0 ——c (2.8)

Thus we can see that the electron as a whole has one unit negative electric charge e.
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The magnetic charge distribution
inside of the electron.

In our electron model, we no longer regard the electron as a point-like particle.
Similar to the electron’s electric charge, which has continuum distribution inside of
the electron, we make one of our basic assumptions here that the magnetic charge has
continuum distribution inside of the electron. The distribution equation is as follows:

p, (r,0) = —%lexp(—i)cose (3.1)
TU a

e e

By integrating the magnetic charge density equation (3.1), we can get the volume
magnetic charge:

0,(r.0) = [ p,(r,0)dr’ (3.2)

In which dr ® = 27zr? sin 8d @dr thus

0,(r.0)=— %1 exp(—-—) cos 922 sin 6dQdr (3.3)
L T, r a,
Therefore,
r r r .

0 (r,0)=-2 gj—exp(——)d(—) cos@sin 0dO (3.4)
4 ae ae ae

Thus:
o r ro 4

0 (r,0)=-2 g[j—exp(——)d(—)][ j cos@sin 0d0)] (3.5)
0 ae ae ae 0

Consequently,

0 (r,0)=—g[l-(1+-) exp(—L)]%(l —c0s26) (3.6)

a a

e e

Equation (3.6) is the electron magnetic charge space distribution equation.
From the above equation (3.6), the radial part of the distribution is a kind of
cumulative gamma distribution function *[B].



From equation (3.6), we find out that:
When 6 = 7, Thus:

0, r,m)=0 3.7)

From equation (3.7), we learn that within the sphere of any radius r, the
magnetic charge total is always zero.

We find out that inside of the electron, within the sphere of any radius r, the
magnetic charge as a whole is always zero, even though magnetic charge distribution
exists inside of the electron.

When 6 = %, thus:

o} (r,%) — g1 (1+ ) exp(——)] (3.8)
a a

e e

The above equation (3.8) is the electron north pole area magnetic charge
distribution within the sphere of radius r, from which we can see the magnetic charge
distribution is also the cumulative gamma distribution [B].

When r» — o thus:
0,=-¢ (3.9)

Which shows us that the electron has one unit negative magnetic charge ‘g’ in the
whole north pole area (o< g < 7).
2

Inside the electron, the whole area of the north pole, has one unit negative magnetic
charge ‘g’.

As we know, the electron has total zero magnetic charge, so the electron whole south
pole area (7 < g < ;) has one unit positive magnetic charge ‘g’.
2

Inside the electron, the whole area of south pole has one unit positive magnetic charge

< b

g.

Reference
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Quasiclassical quantization of the magnetic charge
P. Hraské
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The electric field inside of
the electron

As we know, the Gauss Law of Electric Field defines the relationship between electric
charge and electric field as follows:

P.
€y

V.E=

(4.1)

In which E is the electric field strength, and P, 1s the electric charge density.

If we combine the Gauss Law of Electric Field equation (4.1) and the electric charge
density distribution equation (2.1), we will obtain the follows electric field solution:

E=

lexp(—L)(f sin 6 — O cos 0) (4.2)
a

2
g, ¥

e e

Below, we will prove that the above equation (4.2) satisfies the Gauss Law of Electric
Field.

As we know the gradient V' in spherical coordinate is:

V=f£+léi+ 1 éi
or r 00 rsin@ 0¢

From equation (4.2), thus:

vV E=—F¢ {—[ exp(——) smﬁ——exp(——)—cos 6} (4.3)
g,’a, or

Thus

vV E=—F¢ {—[ exp(——) sin @ + — exp(— —) sin 6} (4.4)
g,’a, or a,

V-E=—2 {[—izexp(—L) L exp(-ysing + izexp(—i) sin 6} (4.5)
&7 a, a,” ra, a, r a,

Therefore:

12



V-E=—2 {[—izexp(—i) —iexp(—i)]sine+i2exp(—i)sin o} (4.6)
ga, r a, ra, a, r a,
And so:
= 1 r . 4 7
V-E=— —— —exp(——)siné 4.7)
grra, r a,

If we combine equation (4.7) and (2.1), then we will get the Gauss Law of Electric
Field.

P.
&y

V-E=

Thus we have proved that the electric field equation (4.2) indeed satisfies the Gauss
Law of Electric Field.

13
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The magnetic field inside of
the electron

Similar to the electric field, the Gauss Law of Magnetic Field has defined the
relationship between magnetic charge and magnetic field. The Gauss Law of
Magnetic Field is:

V.H =L (5.1)
Ho

In which A is the magnetic field strength, p,, 1s the magnetic charge density.

Combine the Gauss Law of Magnetic Field (5.1) and magnetic charge density
distribution equation (3.1), and we get the follows magnetic field strength solution:

g=—28 1= ) cos 0+ fsin0) (5.2)
T,a, v a,

We will prove that the above equation (5.2) satisfies the Gauss Law of Magnetic Field.
As we know the gradient V' in spherical coordinate is:

V:fi+léi+ 1 éi
or r 060 rsin@ 0¢

From equation (5.2), thus:

Vi =8 (O L expc Dyeoso+ L exp-) - sin gy (5.3)
Mo, Or r a, r a, 00

Therefore,

V-H=—2 {[—L2 exp(—L) —Lexp(—L)]coséw%exp(—L) cos 9]} (54)
o, T a,” ra, a, r a,

Thus:

VH=—2 5 lexp(—L)cosé? (5.5)
Homma 1 a,

Combine equation (3.1) and (5.5), then we get:

14



P
Hy

V.-H-=

Thus we have proved that the magnetic field solution equation (5.2) satisfied the
Gauss Law of Magnetic Field.

Reference

The magnetic dipole interaction in Einstein-Maxwell theory

W.B.Bonnor

Class.Quant.Grav. 19 (2002) 149-153

Interaction between a stationary electric charge and a stationary magnetic dipole

W.B.Bonnor
Class.Quant.Grav. 18 (2001) 2853
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The electromagnetic field
angular momentum of the electron

As we know, the electromagnetic field has the properties of energy, momentum and
angular momentum. The electromagnetic field momentum density is:

1
2

C

p=—EFExH (6.1)

Based upon the electromagnetic field momentum, and then we can define the field
angular momentum density as follows:

G=Fxp (6.2)
Thus
¢ =L rx(Exi) (6.3)

ljzj‘LFx(Ex]’;V)a’r3 (6.4)

Combine the equation (4.2) and (5.2) into equation (6.3),
Thus:

3.2
T a, r

- eg 1 2r A

&= exp(-—0)0 (6.5)
For the cylindrical coordinate ( o, ¢, z), which has the follows relationship with the
spherical coordinate (r, ¢, €):

p=rsinf

z=rcosf

We can separate the angular momentum density into the z component and p

component,
The z component of angular momentum density is:

16



eg 1
¢, = 7[352712 . exp(——)sm@ (6.6)

C

The p component of angular momentum density is:

eg 1 2r
G, =— 3g2 —exp(——)cosf (6.7)
wa; r a

e

As we know the volume element is: dr’ = 27> sin 6d Gdr
For the p component of angular momentum density, because

]icosé’sianH =0 (6-8)

6=0

Thus we can get the p component of angular momentum:
L =0

For the z component of electron angular momentum, we have

L. I eg 1 xp(——)smHZﬂr sin &d &dr (6.9)
Thus:
L, =2 [ rexp(-Z)drsin’ aio (6.10)
T a, a,
2e 2
L = rexp(-—)drj sin® 640 (6.11)
7[ e 0 e
Therefore:
eg r 2r I .
L.(r,0)=—> exp(——)](@ ——sin 26) (6.12)
4r . a, 2

The equation (6.12) is the angular momentum distribution equation of an electron.

When 6 = 7, the z component of angular momentum is:

L (r,z)= . [1 (1+—)exp(——)] (6.13)

e 8

17



The equation (6.13) is the angular momentum within the sphere of radius r of an
electron.

The angular momentum distribution is a kind of cumulative gamma distribution in
mathematics [B]

When » — o thus:

L=

=y (6.14)

The above angular momentum is the electron’s electromagnetic field angular
momentum in total.

What is the electron spin? As we know, the electron spin is the electron
intrinsic angular momentum. Let us make an assumption that electron spin is the
electromagnetic field angular momentum, which also means that the electron spin is

of purely electromagnetic origin.

Thus:

h
[ ==
=3 (6.15)

Combine (6.14) and (6.15), thus:
eg=h (6.16)

From equation (6.16), we found out that the multiple of electric charge unit ‘e’ and
magnetic charge unit ‘g’ equal the Planck’s constant ‘h’.

Then, we can also calculate the ratio of magnetic charge ‘g’ and electric charge ‘e’ as
follows:

%: eiz (6.17)
Thus:

g 2¢g,hc

. = 2800062 (6.18)
So:

g__ 1 (6.19)
e 2¢cca '

18



Thus:

g_1 |4 (6.20)
e 2al\ e,

As we know, the vacuum impedance is:

Z, = 1 (6.21)
2

So we can see the ratio of magnetic charge unit ‘g’ and electric charge unit ‘e’ has the
unit of impedance.

Reference
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A derivation of the classical monopole energy loss from angular momentum
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J. S. Trefil

Am. J. Phys. 51, 1113 (1983)

A Newton—Faraday approach to electromagnetic energy and angular momentum
storage in an electromechanical system

N. Gauthier

Am. J. Phys. 70, 1034 (2002)

Field angular momentum in atomic sized systems
Jerzy Dryzek , Douglas Singleton
Am. J. Phys. 67, 930 (1999)

Electromagnetic momentum density and the Poynting vector in static fields
Francis S. Johnson, Bruce L. Cragin, and R. Richard Hodges
Am. J. Phys. 62, 33 (1994)

Dipoles at rest
David J. Griffiths
Am. J. Phys. 60, 979 (1992)

Rotating waves
Peter H. Ceperley
Am. J. Phys. 60, 938 (1992)
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with a magnetic dipole
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Am. J. Phys. 55, 755 (1987)
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The electric field energy
of the electron

As we know, the electric field energy density is:

1
u =580E2 (7.1)

e

Integrating energy density for the sphere of radius r, we can get the electric field
energy:

1
U, = EgoEzdﬁ (7.2)

With the electric field strength equation (4.2), then we can get:

e’ 1 2r .
U =|————exp(——)bmr-dr 7.3
=] Y (7.3)
Thus:
e’ 2r
U,(r)=———[1-exp(——)] (7.4)
73 an ae

Equation (7.4) is the electric energy distribution equation of electron. We find out that
the electric field energy has the spherical exponential distribution inside of the
electron.

When r — oo, thus:

2

U -_¢ (7.5)

e 3
TTEa,

Equation (7.5) is the electron’s electric field total energy equation.

21
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The magnetic field energy
of the electron

As we know, the magnetic field energy density is:

w, = (8.1)

Integrating energy density to volume of the sphere of radius r, from the magnetic field
equation (5.2), then we can get the electron magnetic field energy

2

U, =| 28 . exp(—2")dr (8.2)
ﬂ'ﬂoae ae
Thus:
g’ 2r
U,(r)= [1- eXp(—a—)] (8.3)
0™e e

The equation (8.3) is the magnetic field energy within the sphere of the radius r.
From equation (8.3), We find out that the magnetic field energy of electron has the
spherical exponential distribution.

When r — o, thus:

2
U =-% (8.4)
7Z',Lloae

Equation (8.4) is the electron magnetic field energy in total.

22



Chapter

The electromagnetic field energy
of the electron

As we know, the electromagnetic field energy density is:
1 1

u =5£0E2 +5y0H2

Thus the electron electromagnetic field energy is:

uv=U,+U,

Combine equation (7.5) and (8.4), thus:

2
U, e mya,

e

-3 2
U, 7mnea, g

m

Thus:
U, _ e’ u,
Um 72-2g2$0

As we know:
ge=h

And also:

- 4rg,hc

Thus
U, 2a.,
U _(72')

23
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(9.8)



2 4 2
U=—5_@1+%) (9.9)
7T, a, V4
Thus:
2
U:E(n“o‘2 ) (9.10)
a,o V4

As we know, the electron mass is one of the basic properties of electrons. Where does
the electron mass come from? One of the most popular theories is the electromagnetic
origin of electron mass.

From the above equation (9.10), we get the electron’s electromagnetic energy; let us

make an assumption here that the electron’s mass origin is from the electromagnetic
field energy, thus:

U=mc’ (9.11)

In which U is the electron electromagnetic field energy, and m, is the electron mass,
then combine the equation (9.10) and (9.11), we can get

2
met =T (142 (9.12)
a,o /4
Thus:
h 4o’
a, = (1+-2) (9.13)
m,ca V4

And we know that the Bohr radius is:

h
4, = (9.14)
m,ca
Thus:
2
a, =a0(1+4i2) (9.15)
T

As we know, the value of fine structure constant is about:

a~— (9.16)

24



Thus:

2% <1 (9.17)
T

Thus:

a, = a, (9.18)
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The velocity of the

1 O electromagnetic field

As we know, the velocity 14 , the mass m, and the momentum P has the follows
relationship:
- P
V=— (10.1)
m
Let us make the assumption that the above relationship is also valid within the
electromagnetic field. As we know for the electromagnetic field, the momentum
density is:
R
p=—ExH (10.2)
c
Per our assumption, the mass origin is from the electromagnetic field energy, so the
mass density inside the electromagnetic field is:
(10.3)
(10.4)

p - C2
In which u is the electromagnetic field energy density:

(10.5)

1 1
u :E‘C"OEZ +5,U0H2
Thus, the velocity of electromagnetic field is as follows

(10.6)

D |

V=
Thus:
Vzl EX?
E(EOEZ +51L10H2)

26



As we know:

1
=
Véoky
Thus
V_ (eaBx(uh) (10.7)
C

%[(\/EE)Z + (i H)*]

Equation (10.7) is the electromagnetic field velocity equation.

From the equation (10.7), we found out that the value of velocity vV is always less
than the speed of light c, when and only when both of the follows two conditions are
satisfied, the velocity will equal to speed of light, which are:

E-H=0 (10.8)
And

e E =1, H (10.9)
Thus:
V=c (10.10)

Combine the equations (4.2) and (5.2) into (10.7), then we can get the velocity of
electromagnetic field inside the electron as follows:

L
0 (10.11)

oz
1+(£0{)2
7

In which ¢ is the azimuthal angle.

From the above equation, we find out that inside of the electron, the velocity is around
the azimuthal direction, and that the speed inside of the electron has constant value.

As we know:
2% <1
T

Thus:

27



e (10.12)
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11

The conservation of electric charge

The electric charge conservation is one of the basic conservation law in physics.

The electric charge conservation law is as follows:

op —
_e+v. V :0
Py L.V)

In which p, is the electric charge density.

(11.1)

Let us prove that the electric charge conservation equation is valid for the electron.

Combine the electron velocity equation (10.11) and the electric field equation (4.2),

then we can get:

VxE = 2Ve lexp(—L)(ésin 6 +rcosf)
ToE,a, v a,
As we know:
0 1,0 1 -0

Vep—t—O—t———p—
or r 068 rsin@ 0¢

Thus:

- 51 .
Vx(VxE)=- iV¢2—exp(—£)sm9
0%e a

From the electric charge density equation (2.1), thus:

Vx(VxE)zipeV

€
From equation (4.2), we know that:

GE

—=0
Ot
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(11.2)

(11.3)

(11.4)

(11.5)

(11.6)



Thus, we can get
SOVx(VxE)=p6V+5O%—£: (11.7)

Compare this with the hydromagnetic equation (dynamo equation), which is as
follows:

VX(VXE)Z—],VZE—F%—f (11.8)

In which 4 is the constant of the magnetic diffusivity.

We can see that there are many similarities between these two equations; we then call
the equation (11.7) as the hydroelectric equation of electromagnetic field.

Because:

V- [Vx(VxE)]=0 (11.9)
Thus:

%J,v.(pj):o (11.10)

Equation (11.10) is the electron electric charge conservation equation, which is also
called the electric charge continuity equation.
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Chapter

12

The conservation of magnetic charge

Similar to the electric charge, the magnetic charge conservation law is as follows:

op ~
v (p,V)=0
Py (L.V)

In which p,, is the magnetic charge density.

(12.1)

Let us prove that the magnetic charge conservation equation is valid for the electron.

Combine the electron velocity equation (10.11) and the magnetic field equation (5.2),

then we get:

- Vg 1 A .
VxH=—% —exp(—i)(ﬁ cosf —rsin )
ma, v a,

As we know:

V=f£+léi+ 1 (z?i
or r 060 rsin@ 0¢

Thus:

V x (17 X ﬁ) =— gV¢2 lexp(—ﬁ)cosﬁ
m,a; r a

From the magnetic charge density equation (3.1), thus:

Vx(VxFI)szmV

Hy

From equation (5.2) we know that:

o _
ot

0
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(12.2)

(12.3)

(12.4)

(12.5)

(12.6)



Thus, we can get:

,uOVx(VxI:I):pmVnL,uoaa—i] (12.7)

Compare with the hydromagnetic equation (dynamo equation), which is as follows:

Vx(ﬁxé):—/ivzé+aa—lj (12.8)

We can see there is much similarity between these two equations. We then call the
equation (12.7) as the hydromagnetic equation of electromagnetic field.

Because:

V- [Vx(VxH)]=0 (12.9)
Thus:

—ag’tm +V-(p,V)=0 (12.10)

Equation (12.10) is the electron magnetic charge conservation equation, which is also
called the magnetic charge continuity equation.
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Chapter

13

The electromagnetic field equation

From our electron model, we find out that the electromagnetic field has satisfied the 5
equations (4.1), (5.1), (10.7), (11.7), (12.7), here we rewrite each one of the equations

as follows:

The Gauss Law of Electric Field:

P
&

V.E=

The Gauss Law of Magnetic Field:

p”l
Ho

V.H=

The velocity of electromagnetic field equation:

V_ (eE)x(uH)

¢ ;KJEE)Z + (it H)*]

The hydroelectric equation:

SOVx(VxE') :pel7+goa—E
ot

The hydromagnetic equation:
OoH

ﬂoVX(VXﬁFPmVJFﬂoE

(13.1)

(13.2)

(13.3)

(13.4)

(13.5)

Let us consider one special case based on the above 5 electromagnetic field equations,
the free charge electromagnetic field in vacuum, which satisfies the following four

conditions:

pP.=0

33
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p, =0 (13.7)
E-H=0 (13.8)
e E =y, H (13.9)

Then, based on above 4 conditions, we get:

V=c (13.10)
gV xE = ey, cH (13.11)
Thus:
eV xE=H (13.12)
And:
uV x H =— /g, p1,cE (13.13)
Thus:
uV xH=-E (13.14)

Thus, we can get the following 5 equations of the electromagnetic field in vacuum of
free charge, which are:

V-E=0 (13.15)
V-H=0 (13.16)
V=c (13.17)
. OF
VxH=¢,— 13.18
" (13.18)
VXE:—%%—I? (13.19)

Then based on the above 5 equations, we can get the Maxwell Electromagnetic Wave
Equation in vacuum of free charge:
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Chapter

1 4 The electromagnetic field equation
in complex form

The electric field and magnetic field can be expressed in complex form.

Let us define the electromagnetic charge density in complex form as:
(14.1)

_ Pu i Pe

P e e

The Electromagnetic field strength in complex form as:

U=\ u,H+iJe, E (14.2)
And also:
%= u,H—i\Je, E (14.3)
As we know the electromagnetic field energy density is
u=tsE+ 1y B (14.4)
2 2
Thus, we have:
1 = =t
u=—I-T (14.5)
2
The electromagnetic field momentum density is:
I
p=—ExH (14.6)
c
Thus, we have:
I e
p=—1>IxT (14.7)
i2c
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Then we can rewrite the electromagnetic field equation as follows:

V.I=p (14.8)

. %

poclxl (14.9)
i T.T*

vX(fo)zpm% (14.10)

The equation (14.10) can be called the hydro-electromagnetic equation.

As we know:

Vx(VxD) = -VW =V -VY[ +V(V-T)-T(V-V) (14.11)
Thus:
Vx(VxD)=(L-VVV =V -V)T + pV =T(V-V) (14.12)

Thus the hydro-electromagnetic equation can be rewritten in the complex form as:

%:(ﬁ-V)V—(V-V)f—f(V-V) (14.13)

And thus, we can rewrite the equation (14.13) as follows:

gﬂﬁ-vﬁﬁ(v-ﬁ):(ﬁvﬁ (14.14)

Then the hydroelectric equation can be rewritten as:

L VIE+ BV = (B9 (14.15)

Then the hydromagnetic equation can be rewritten as:

W7+ B P = (-9 (14.16)

For the electron, we have

p.(r,0)=—— L exp(-sing (14.17)
rra, r a,

And
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pm(r7 0) = _%lexp(—L) cos &
a a

e e

As we know:
& |6 _ 1

e\uy 2a
Thus:

pm (]/',9) — _i & 2e z_lexp(_L) COSG
2a E ma,r a,

Let us define:

Pu .7 P,
pa = +1—
lu, 2a e,
Thus:
o, = _iL%lexp(—LHQ)
2a \Jg, T a; r a,
So:

o =—8 L 1ot 1in)
a

2
VHy 7 T e

Let us define:
1: = ILlOH+ll goE
2a

a

As we know:

B lexp(—L)(f sin @ — O cos 0)
ae

2
ng.a, r

H=-_2& lexp(— L)(f cos @ + Osin 0)
”ﬂoae r ae

Jofi- Llexp(_ai)(f sin @ — Ocos 0)
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(14.18)

(14.19)

(14.20)

(14.21)

(14.22)

(14.23)

(14.24)

(14.25)

(14.26)

(14.27)



=)
|

g 1 exp(— L)(f cos 6 + Osin 0)
T\ MHya, T a,

Ju H :iLlexp(—L)(fcosﬁﬂésin 0)
2a 7Z'2 &a,r a,

Thus:

P el rioi-ib)
2a *\|eya, 1 a,

Thus:

=8 1 ol rioNi-id)
a

a
M, Tar .
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(14.28)

(14.29)

(14.30)

(14.31)



Chapter

15

The conservation of energy

The conservation of energy is one of the most basic physics laws, for the
electromagnetic field, the energy conservation equation is as follows:

op ~
—+V-(pV)=0
Py (pV)

In which p is the mass density, V is the field velocity.
The mass density and energy density have the following relationship:

u=pc’

In which u is the electromagnetic field energy density.

From equation (14.15) and (14.16), we have:

%—f+(17-V)E+E(v-I7)=(E-V)I7

And
OH

E+(I7-V)F]+I:I(V-I7):(I:I-V)I7

Thus:

E.%+E-[(I7-V)E]+E2(V-I7)=E'[(E'V)V]
And

- 0H - - 3 2 % 7T %
H.E+H-[(V-V)H]+H (V-V)=H-[(H-V)V]

Thus:
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(15.1)

(15.2)

(15.3)

(15.4)

(15.5)



10E*> 1 - L B T BN E D

o +5[(V-V)E J+E*(V-V)=E-[(E-V)V] (15.6)
And

10H? 1 - 2 200 Ty B DT

ERy +E[(V-V)H [+H*(V-V)=H-[(H-V)V] (15.7)

Combine (15.6) and (15.7), thus:

%+ (V -VYu+2u(V-V)=¢g,E-[(E-VWV]+ u,H -[(H-V)V] (15.8)

Let us assume that the electromagnetic energy is conserved, therefore, we have:

ou

—+V-uV)=0 (15.9)
ot
Thus:
ou - —
E+V-Vu+u(V-V)=O (15.10)

Thus, we have:
u(V-V)=g,E-[(E-VW 1+ u,H -[(H-VV] (15.11)
As we know:

1

u,=—¢g,E’ (15.12)
2
1 >

u, =E,uOH (15.13)

E=Enq (15.14)
H = Hi (15.15)

From the electromagnetic field energy conservation equation, then we can get the
following equation:

Py =2e i 1GVP1 E e [, V)] (15.16)
u u
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Then we can rewrite the electromagnetic field as follows:

\%

Fe

14
C

Pe

(e, B x (JJuu, H)

WY+ (]

—;+(I7-V)E+E(V'I7)=(E‘V)V

;+(V~V)H+H(V-V)=(H'V)V

um

A, -[(A, - VIV]
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(15.17)
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(15.19)
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Chapter

1 6 The electromagnetic model

of the proton

As we know the atom consisted of electrons and nucleus, and the nucleus
consists of protons and neutrons.

Both protons and neutrons have the half spin just like electrons do. But the
proton has one positive electric charge unit ‘e’ and the neutron as a whole has zero
electric charge.

Comparing protons and electrons, the proton’s mass is much larger than the
electron’s mass, but they have the same amount of electric charge (with different
signs), protons have positive electric charges, and the electrons have negative electric
charges, both the electrons and protons have the same value of half spin.

Let us make an assumption that the proton has a similar internal structure as
electrons, the difference is that the proton has one positive electric charge, and the

mass of the proton is much larger than that of the electron.

The electric charge density distribution inside the proton is as follows:

0.(r,0) =%1exp(—i)sin9 (16.1)
T r a

p P

The magnetic charge density distribution inside the proton is as follows:

o (10) =5 Lexp-)cos 6 (16.2)
Tl a

2
Pr p

Based on the above charge distribution equation, we can get the proton’s
electromagnetic field distribution equation as follows:

E=—— le>q)(—i)(fsin¢9—écos@) (16.3)
T goap r ap

~ g 1 o A

H=- —exp(——)(7cos@ +Hsin ) (16.4)
Tea, ¥ a,
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Based on the electromagnetic field distribution equation, similar to the electron, we
can get the proton’s electromagnetic field energy:

2
U:j—‘;(1+4:2 ) (16.5)
P

Then, we make the assumption similar to the electron that the proton mass also has
electromagnetic origin, then we have:

2
m =£(1+4‘)‘2 ) (16.6)
VA

P
apa

Compare this with the electron energy formula:

2
met =T (14 4“2 ) (16.7)
a,x p/a

So we can get following relationship:

mp ae
= (16.8)
m, a,
As we know that:
4o
a, = ay[1+(—)’] (16.9)
T
Thus:
4o
a, = a,[1+(~=)*] 2 (16.10)
T m

P

In within a,, is the Bohr radius.
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Chapter

1 7 The electromagnetic model

of the hydrogen atom

Despite the hydrogen atom’s overall neutrality, hydrogen does have an
internal distribution of electric charge.

As we know that the simplest hydrogen atom consists of one proton and one
electron, the hydrogen atom as total has zero electric charge. Combine both electron

charge distribution and proton charge distribution together, then we can get the
hydrogen atom’s electric charge distribution as follows:

e 1 r 1 r 1 .
p. =—5[——exp(——) +—exp(-—)]—siné (17.1)
T a, a, ap dp ¥

Hydrogen atom magnetic charge density distribution equation:

1 r 1 r .1
P, = %[——exp(——) + —exp(——)]—cosé (17.2)
I . a, ap ap T

Hydrogen atom electric charge distribution equation:

0. = e—exp(= )1+ + exp(=)1 +-) 1 (0 - Lsin 20) (17.3)
a, a, a, a, w@ 2
Hydrogen atom magnetic charge distribution equation:
r r r r.1
0, = glexp(=—)(1 +—) —exp(——)(1+—)] - (1 - cos 20) (17.4)
a, a, a, a, 2

Hydrogen atom electric field equation:

e
2

E= [iexp(—L)—Lexp(—L)]l(fsinﬁ—écosé?) (17.5)
a a r

0 e e aP aP

Hydrogen atom magnetic field equation:

H=-5 [Lexp(—L)—Lexp(—L)]l(fcosﬁ+ésin@) (17.6)
a r

THy a, e ap ap
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Base on these equation, we can get hydrogen magnetic field energy:

2g% 1 1 2ad)

U, =5 (—+—-

7, 2a, 2a, a,a,
In which
1 1 1
- = —
a, a, a,
Thus:

2¢° 1 1 2
U, = ( -

m, 2a, 2a, (a,+a,)
Thus:

2¢° 1 1 2
U, = ( -

m, 2a, 2a, (a,+a,)
Thus:

2

1 1 4

Um g_(__|___

i, a, a, (a,+a,)

The hydrogen electric field energy is:

2
U, - 23e ( 1 N 12
w°&y 2a, 2a, a,+a,

1 1 4
ot
7°g, a, a, a,+a,

2
e

U, =

Thus, the hydrogen atom’s electromagnetic energy is:
v,=U,+U,

Thus:
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(17.7)

(17.8)

(17.9)

(17.10)

(17.11)

(17.12)

(17.13)

(17.14)



— _ e
UH - Upmmn + Uelectmn 4Uelectmn

ae+ap

As we know

a
2 «<1
a

e

Thus:
UH ~ Uproton - 3Uelectron

Thus:

my ~m,—3m,

As we know:

~ e 1 r 1 ro1 .. A

E=——[—exp(——) ——exp(——)]—(rsind — fcos )
g, a, a, a, a, ' r

H=-5_ [L exp(— L) L exp(— L)] 1 (7 cos 0+ O sin 6)
a r

Hy a, e 4p dp

Thus:

- = e o1 r 1 r
ExH = —5— l—exp(-—) - —exp(-—)T
T &gy a, a dp ap

Thus, the momentum density for hydrogen is:

- e
p= 3g
T

L exp(—) — L exp(- LT
a a

rz e e aP aP
The energy density for hydrogen is:
1 1
u =5£0E2 +Ey0H2
1 2 2

e I 1 r 1 r
+50) S [—exp(- =)~ —exp(- )
Hy 1T a a, ap dp

e

27° nle,

Thus, the velocity of a hydrogen atom is:
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(17.15)

(17.16)

(17.17)

(17.18)

(17.19)

(17.20)

(17.21)

(17.22)

(17.23)

(17.24)



V= @ (17.25)
T > gz
( +-)
&y Ho
- 2e 1 -
V:ﬂgg 7 7] (17.26)
Ca+ 5
g e,
Thus:
ica
7 P (17.27)
1+(£a)2
T

We find out that inside the hydrogen atom, the velocity is the same as for the electron,
which has a constant speed value.

As we know the field angular momentum density is:
R
§=C—2"><(E><H) (17.28)

Thus, the hydrogen atom field angular momentum is as follows:

. eog - 1 v 1 7
¢ = -2 f[—exp(-—) - —exp(-—)]’ (17.29)
Tr a a

e e aP aP

Then, integrating equation (17.28), we can get the field angular momentum:

ljzj‘%;7><(E><1’;V)a’r3 (17.30)
c

- eg =~ 1 r 1 v

¢ =——5-0[—exp(=—) — —exp(-—)] (17.31)
T’r " a, a, a, a,

For the cylindrical coordinates ( o, ¢, z), which has the following relationship with
the spherical coordinate (r, ¢, 6):

p =rsinf
z=rcosf

We can separate the angular momentum density into z component and o component,
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The z component of angular momentum density is:

egl 1
6. =5

Tr a

e

exp(——) — Lexp(—L)]2 siné

a, a ap

The p component of angular momentum density is:

__ﬁl[l
o roa

e

—exp(—L) _ exp(—L)]2 cosd

a, dp ap

As we know, the volume element is: dr’ = 27> sin 6d 0dr

For the p component of angular momentum density, because

jcos&sin&d@ =0

6=0

Thus, we can get the p component of angular momentum:

L =0

For the z component of electron angular momentum, we have:

_regl 1
LZ = J.;;[a—)ex

Thus:

L - 2eg J-r[_

6

Thus:

2egt 1
L =—=|r—
=)

0 e

-
e

Z

When 6 = r, thus the z component of angular momentum is:

p(—) - iexp(—L)]2 sin @2 sin 6d édr
a

e Adp dp

xp(—-) = exp(——)P drsin’ 646
a, ap ap

0
exp(—) - L exp(-) T dr [ sin” a0
a, a a

P P 0

j ieXp(__) ——exp(——)F dr(6 - Lin 20)
0 ae 2

a ap ap

egr 1 r 1 r
L, = [H{—exp(-—) - —exp(-—)T'dr
Ty o a a, ap ap

e
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(17.32)

(17.33)

(17.34)

(17.35)

(17.36)

(17.37)

(17.38)

(17.39)

(17.40)



When r» — o thus:

2
- 1 24, (17.41)
T 4 4 aa,
In which
1o, 174
a, a, a,
Thus:
eg 4a’
L =—={-—4} (17.43)
2 aa,

As we know eg=h

Thus:
4a’
L =n{l- 4 (17.44)
aa,
Thus:
a2
L=n(1-4—%) (17.45)
aa,
Thus:
aa
L=n1-4———=) (17.46)
(a,+a,)
Thus:
1 a
L=a(1-4—-1) (17.47)
1+ 20y %
As we know
aP
P (17.48)
a

e
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Thus:
L~h (17.49)
Based on the equations (17.3) and (17.4), we can get the ratio of magnetic charge and

electric charge inside the hydrogen atom:

Qm(r,é?):_g (1-cos26) (17.50)
Q.(r0)  2¢ (9—;sin2<9)

For the whole north pole area which & is within (0 — %)

Thus:
Vs
Qm (7",0 - 7)
R A 4 (17.51)
0,(r0 - g) ¢

For the whole south pole area which & is within (% —7)

Thus:
T
0, (r,——>n)
r2 T 28 (17.52)
0, (n% N
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Chapter

1 8 The electromagnetic model

of the neutron

The neutron as a whole has zero electric charge and zero magnetic charge, but
the neutron still has an intrinsic electric field and magnetic field.

The neutron in total has zero electric charge and magnetic charge, but similar
to the electron and proton, the neutron still has half spin.

Let us compare the neutron and hydrogen atoms, both as a total have zero
electric charge and zero magnetic charge, and both have intrinsic electric field and
magnetic field. The major difference is the neutron alone has half spin.

Let us assume that a neutron has a similar internal structure to a hydrogen
atom. Then we can make an assumption that the neutron’s electric and magnetic
charge distribution equation is as follows:

e 1 r 1 r. 1.
p. =—[—exp(——)——exp(-—)]—sind (18.1)
T a a a_ a_ r

+ +

The neutron’s magnetic charge density distribution equation is as follows:

| r 1 r .1
P, = gz [—exp(——)——exp(——)]—c059 (18.2)
- a a a._ a_ r

+ +

The neutron as whole has no electric charge, but has half spin. Here is the
model for the neutron, which has a similar electromagnetic structure as a hydrogen
atom. The difference is that the hydrogen atom has spin 1, but the neutron has half
spin.

Similar to the hydrogen atom spin formula, we can get the neutron’s angular
momentum as follows:

a,

“ (18.3)
1+
a

L=h(1-4

As we know neutrons have half spin, so:
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L=t
2

Let us make an assumption that

a, <a.

Thus:

L322

a

Thus:

L3422

a,

We can get the neutron’s magnetic field energy as follows:

2
g o2 11 2

= +
iy 2a, 2a_ a,+a_
Thus:

_2g’ 2+42)

Um
i, 2a

+

Thus:

U :g_2(2+x/§)

m
T, a,

Thus:

Thus:
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(18.4)

(18.5)

(18.6)

(18.7)

(18.8)

(18.9)

(18.10)

(18.11)



5

2
a, =2a (1+—
N A ( 2)

Therefore, we can get the neutron’s electric field energy as follows:

2
U - 23e ( 1 N 1 2
g, 2a, 2a. a,+a_
Thus:
y 2 (2++/2)
© e, 2a,
Thus:
U - e’ (2+42)
T'E, a,
Thus:
2
1
U,=———
g, a,

As we know, the electromagnetic field energy is:

u=U,+U,
Thus:

2
L 4“2 )
a,x V4

Thus:

U=m,_.c

m,, is the neutron mass, thus:

2
me? =1 1429
a,x V4

Thus:
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(18.12)

(18.13)

(18.14)

(18.15)

(18.16)

(18.17)

(18.18)

(18.19)

(18.20)



2
a, =429
m,ca 7

Thus:

a,=a,(2+2)

4a°
2

T

PP T SN Y0 T 2
mco

n

As we know,

4 3+242
a+
Thus:
2

0 = 322421+ 4“2 )

m,co T
Thus:

2

a =10+ 72)(1+ 4“2 )

mco T

n

Compare this with the electron formula:

2
m,c’ :E(l + 40(2 )
a,o /s

2
a, = h (1+4“2)
m,ca V4

As we know,
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(18.21)

(18.22)

(18.23)

(18.24)

(18.25)

(18.26)

(18.27)

(18.28)

(18.29)

(18.30)



Thus, we get the relationship between the electron mass, neutron mass and their
radius relationship:

& 10+ 742) " (18.31)
ae mn

L _ 24 2) e (18.32)
ae m}’l
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Chapter

1 9 The electromagnetic model

of helium atom

The simplest helium atom consists of two protons and two electrons.
The helium atom’s electric charge and magnetic charge density distribution is:

e 1 r 1 r 1 r 1 r .1 .
p.=—glexp(- )+ ——exp(—— ) ~——exp(~—) ~——exp(~—)]. sinf

el ael an an apZ aPZ apl aPl

Helium’s magnetic charge density distribution is:

P = ST exp(= ) = exp(-—) + ——exp(-—) - —exp(~ )] -cos

2
27ma el a, A, %) Pl ap Apy apy T

The helium atom’s electric charge distribution equation is:

r r

0, = elexp(=

)+ )~ exp(- ai)(nai)—exp(—ai)(l+ai)]$(9—§sin 20)

Y1+-) +exp(—
a,

r
el A, ap Pl

Helium’s magnetic charge distribution equation is:

"y —exp(- )1+~ )+exp(—L)(l+L)—exp(—L)(l+L)]%(l—cos 20)
Ay

el 2 e pl pl p2 P2

0, = glexp(- ai)(u

Helium’s electric field equation is:

E=—— D exp(o-") + L exp(- )—iexp(—i)—Lexp(—i)]%(fsine—écose)

&y Ay a, a, a, ap ap apy apy

The helium atom’s magnetic field equation is:

H=_%_ [L exp(—L) _ exp(—L) + 1 exp(—L) b exp(—L)]l (Fcosf+ ésin@)
Tl r

el a, dp a, ap ap;  dpy dp,

ExH=— 51 exp-") - exp- P ~[exp- )~ exp-1}

T E My g Ay ap apy ) Ao ap apy

r

As we know from (6.3), thus:
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(19.2)

(19.3)

(19.4)

(19.5)

(19.6)

(19.7)



G=—Fx(ExH) (19.8)

Lexp(—— ) [ exp(~—) - ——exp(-— T’} (19.9)

el el P2 P2 e2 e2 P1 P1

For the cylindrical coordinates (o, ¢, z), which has the following relationship with
the spherical coordinate (r, ¢, 6):

p=rsinf
z=rcosfd

We can separate the angular momentum density into ‘z’ component and ‘ p’

component,
The ‘z’ component of angular momentum density is:

= exp(- ) - exp- O [ exp- )~ exp(—Fsing (19:10)

a, d, dpy apy %) a, ap dp,

The “ p’ component of angular momentum density is:

— & {[expl= )~ ——exp(- ) ~[——exp(-—)~——exp(-—Fjeoso (1911

P
1 ael aPZ aPZ an an aPl aPl

As we know, the volume element is: dr’ = 27> sin 6d 0dr
For the  p’ component of angular momentum density, because:

Jcos@sin@d@ =0

6=0

Thus, we can get the ¢ p > component of angular momentum:

L =0 (19.12)

P
For the ‘z’ component of electron angular momentum, we have:

(19.13)

L, J.—f{[— exp(— —) ——exp( )] —[ exp(— )—Lexp(—i)]z}sin 627 sin Gd6dr

a, Apy Apy a, a, Aap Ap

Thus:

L =28 [ exp(--) - —expl= - F <[ exp(- ) expi-Plarsinate - (19:14)

el a,  App Apy a, Ay dp dp

Thus:
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L =28 [ ey - exptc L [ exp- ) - exp(- P sin are - (19-15)
Apy

0 el d,  dpy Aoy d,y  Ap ap 0

Thus:

L0.0)=E [t e L)~ ep- Lo -1 enpt- L - Lexp- L jaro - Lsimagy - (19:10)

1
P2 Ap,y Ao €2 PI Pl

When 6 = 7, thus the z component of angular momentum is:

r

L) = [ ([ exp=) - exp(- I~ exp(--)——expi Py (19-17)

ael ael aP2 aPZ an an aPl aPl

7

When r — oo, thus:

2 2
L (oo,m) = 288 (Lean _ G, (19.18)
T ae2ap1 aelap2

In which

N S (19.19)
anpl ae2 apl

r _t,t (19.20)
aelpZ ael apZ

As we know, eg=h

Thus:

Lom=dnf L _4n 1, (19.21)

a a a a
e2 (1_'_7171)2 el (1+jﬂ)2
e2 el

As we know:

a,
P (19.22)

ae2

And

a
22 <1 (19.23)

el
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Thus:
L. (0,7)~0 (19.24)

The helium atom’s spin (angular momentum) is almost zero.
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Chapter

2 O The electromagnetic

characteristic impedance

As we know, the Quantum Hall effect can be used to define the
impedance unit. There are two kinds of Quantum Hall effect: Integer Quantum
Hall effect and Fractional Quantum Hall effect. The integer Quantum Hall
effect can be regarded as a special case of Fractional Quantum Hall effect.

For the Fractional Quantum Hall effect, in which the two-dimensional electron
gas within extremely low temperature and high magnetic field perpendicular to
current, the Hall Resistance has the following equation:

Z:E(iz) (20.1)
n e

In which m and n are the integers.

As we know, the electron has electric charge and magnetic charge, the
magnetic charge distributes along with the electron spin directional, and the electron
spin will align with the external magnetic field. The one side of the two dimensional
electron gases will have positive magnetic charge distribution; the other side of the
two dimensional electron gases has negative magnetic charge distribution.

Let us make an assumption that the characteristic impedance is the ratio of magnetic
charge and electric charge, then:

0
7 ==m 20.2
0 (20.2)

As we know, the electron is the smallest unit of electron gas, the ‘e’ is the electric
charge unit of the electron, and ‘g’ is the magnetic charge unit of an electron. Thus,
we have:

Q, =mg (20.3)
And
Q, =ne (20.4)

Both ‘m’ and ‘n’ are integers.
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Then we have
z="1(&) (20.5)
n e

As we know:
ge=h (20.6)

Thus, we have:
m_ h

Z=—(—) (20.7)
n e

And so we get the result of the Fractional Quantum Hall effect.
When the ratio (i) becomes the integer, the Quantum Hall effect is the Integer
m

Quantum Hall effect. The Integer Quantum Hall effect is the special case of the
fractional quantum hall effect.
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Chapter

21

There are two kinds wave within the electromagnetic field, one is the field
wave, and the other is the charge density wave.
According to the Gauss Law for both electric field and magnetic field, the electric
charge is the source of electric field, and the magnetic charge is the source of the
magnetic field.

When an electric current flows through a wire, it creates the electromagnetic
field both inside and outside the wire.

The electromagnetic wave

Outside the electric wire is a vacuum, both the electric charge density and
magnetic density in the vacuum is zero.

When the electric wire has ac current, there exists electromagnetic field wave
propagate along the wire.

Inside the electric wire, the electric charge density wave and magnetic charge
density charge wave is the source of the electromagnetic field wave.

Outside the wire is a vacuum, which has vacuum impedance. The
electromagnetic field wave in the vacuum has light speed.

The electric wire has characteristic electromagnetic impedance. Both the
charge density wave and field wave have the same wave velocity. The wave velocity
depends on the characteristic impedance of the transmission line. The higher the
impedance, the lower the velocity speed. The impedance of the transmission line and
velocity of the charge density wave have the reversion relationship:

In which ‘v’ is the velocity of charge density sound wave, ‘¢’ is the speed of light in
vacuum, ‘ z,’ is the impedance of the vacuum, and ‘z’ is the impedance of the

transmission line.

The velocity factor is the ratio of the speed of waves in transmission line to the
speed of light in the vacuum.
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The electromagnetic wave in a transmission line may reflect at the end. If the
load is smaller than the line impedance, a reflection will occur with a 180-degree
phase shift.

The forwarding wave and reflection of the incoming wave travels back and
forth along the wire, which can form a standing wave.

The charge density wave, which involves alternating compression and
expansions, similar to a sound wave in the air, is a kind of longitudinal wave.

The charge density wave is a kind of sound wave. The oscillation is in and
opposite to the direction of the wave propagation.

The electromagnetic field wave is a kind of transverse wave. The oscillation of

its electric field and magnetic field is perpendicular to the direction of propagation of
the wave.
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Chapter

22

The electric charge density wave and magnetic charge density wave are kinds
of sound waves. The wave speed has an inverse relationship with the characteristic of
electromagnetic impedance.

The electron impedance

The characteristic electromagnetic impedance of a vacuum is a constant:

7, = \/70 22.1)
80

What is the characteristic impedance of electron? From the equation (20.7), in
Quantum Hall effect, the characteristic impedance of two dimensional electron gases
is the ratio of the magnetic charge and electric charge.

Let us make an assumption that the electron characteristic impedance is the
ratio of the magnetic charge and electric charge along with the spin direction. Let us
now calculate the ratio of magnetic charge and electric charge inside the electron as
follows:

Based on the equation (2.7), we have the electron’s electric charge in the sphere of
radius ‘r’:

0, (r,7) = =€l - (1+—) exp(——)] (22.2)
a, a

e

The electric charge has the same distribution in both the north pole and south pole.
In the north pole area of sphere of radius ‘r,” the electric charge is:

0.(r,0 > %) - —%e[l — 1+ Dyexp(-)] (22.3)
a, a

e

In the south pole area of the electron sphere of radius ‘r’, the electric charge is:

0.2 > )= Len—as D exp(——)] (22.4)
2 2 a, a,

e e
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Based on the equation (3.7), the magnetic charge distribution in a sphere of radius ‘r’
is zero:

0,r0->7)=0 (22.5)

In the north pole area of sphere of radius ‘r,” the magnetic charge is:

0, (r,§)=—g[1—<1+i)exp(—i)] (22.6)
a, a

e

The south pole area of sphere of radius ‘r,” the magnetic charge is:

0, (n%w) — g[l-(1+—)exp(-—)] (22.7)
a, a,

e e

Thus, within the north pole area of a sphere of any radius r, the ratio of magnetic
charge and electric charge is:

0 (r0—>2)
2" _2¢ (22.8)

T
0.r0—>7) ¢

2
The ratio is the constant, it doesn’t depend on the sphere radius ‘r’.

In the south pole area of sphere of radius r, the ratio of magnetic charge and electric
charge is:

o, (r, LN )
—a 28 (22.9)

- =

Qe (r7 A % 72.) ¢

2

The ratio is the constant; it doesn’t depend on the sphere radius ‘r’.

So we can see that inside the electron, for a sphere of any radius ‘t’, both the north
pole and south pole have the same ratio of magnetic charge and electric charge, but
with opposite signs.
Per our assumption that the electromagnetic characteristic impedance inside of an

electron is the ratio of magnetic charge and electric charge along with the spin, which
is:

=2 (22.10)
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As we know, ge=h, thus:

7=

2
e

As we know the fine structure constant is:

2
e

a =
2&,he

Thus:

(22.11)

(22.12)

(22.13)

(22.14)

(22.15)

The ratio of vacuum impedance and electron impedance is the alpha fine

structure constant.

As we know, the electromagnetic wave velocity varies inversely with the wave
impedance, and we also know that the wave velocity in the vacuum is the speed of

light, and then we have following relationship:

Vwave _ Z 0
c /
Thus:
wave — a
c
Thus:
V =ca
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As we know the velocity factor is the ratio of the speed of waves to the speed
of light in a vacuum, we find out that the velocity factor of an electron is the alpha
fine structure constant.

As we know, the ratio of magnetic charge unit and electric charge unit is as follows:

_ (22.19)

h . . . D
As we can see, the value —-is also the quantum hall resistance unit, which is also the
e

ratio of the magnetic charge unit and electric charge unit.
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23

The hydrogen atom electric charge density distribution equation is:

The hydrogen atom spectrum

e 1 r 1 r.1 .
P, = [—exp(-—) ——exp(-—)]~sin 0
n° o a, a, ap a, ' r

Hydrogen atom magnetic charge density distribution equation is:

g 1 r 1 r .1
=~ [—exp(——) - —exp(~—)]~cos 8
a, a, ap ap, r

The hydrogen atom electromagnetic field equation as follows:

E= ze [iexp(_i)_iexp(—L)]l(fsine—écosﬁ)
g, a, a, a ap T

H g [i eXp(—L)—Lexp(—L)]l(f cos 6+ Osin 0)
2y, a, a,” a, ap, ' r

As we know, the hydrogen atom spectrum in vacuum has following format:

1 1 1
TR

nm

In which R, is called the Rydberg constant.

The hydrogen atom spectrum is the electromagnetic field wave energy

(23.1)

(23.2)

(23.3)

(23.4)

(23.5)

spectrum; the atom spectrum is the result of the electromagnetic field standing wave,
which includes both the electric field standing wave and magnetic field standing wave.

According the equation (17.51) and (17.52), we find out that the ratio of the
magnetic charge and electric charge within both the north pole and south pole of a

hydrogen atom have the same value but opposite sign.

Similar to the electron, let us assume the hydrogen atom’s characteristic

impedance is the ratio of magnetic charge and electric charge for both north pole and
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south pole. Thus we can derive the hydrogen atom’s electromagnetic characteristic
impedance as follows:

Z= ZOl (23.6)
(04

Outside the hydrogen atom is the vacuum. The vacuum impedance is:

z, = [Ho (23.7)
&

As we know, the velocity has an inverse relationship with impedance, so the wave
velocity inside the hydrogen atom has the following relation with the speed of light.

v

C

Z,
=— 23.8
VA (23.8)
Then we can get:

v
—=a (23.9)
c

The inside of the hydrogen atom has constant impedance and wave velocity.
Outside the hydrogen atom, exists a vacuum that has light speed as its wave velocity.

Inside of the hydrogen atom, there are both outgoing and incoming waves
along the radial direction, which form a standing wave.

Let’s introduce a new function which we can temporally call the zeta-
exponential function [C] as follows:

n

g,(x)= i = g[2(n + m)] (23.10)

n=0 l’l'

For m =1 thus:

g0 =X = e12(n+1)] @3.11)

In which

2n+]= L (23.12)
m=1 M

The value of &£[2(n +1)] is always larger than 1, with the increase of the integer n, the
value becomes more and more close to the number 1.
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As we know, the spherical wave equation [D] is:

1 %y
Viy=— 23.13
NPy ( )

We can see both the following functions are the solution of the spherical wave
equation [D]:

1 r—Vrt =11 r—rt

—o (i =Y ——exp(i 23.14
rgl( . ) Z,kz r p(i . ) ( )
And

1 r+Vt =11 r+Vt

—o (i =>» ——exp(i 23.15
I"gl( ae ) ;kz r p( kzae ) ( )

r—Vt

.1 . . .
The first solution — g, (i ) is a kind of outgoing wave.
r

e

r+Vt

.1 . . . .
The second solution —g, (i ) is a kind of incoming wave.
r

e

Let us make an assumption that the hydrogen atom electric field with the stationary
wave function is as follows:

It Vt) +g,( - Vt)] —iexp(—L)]l (Fsinf— écos@) (23.16)
a, " r

a a a

e e

E e

1 r .
s—[—exp—)(1+ pRe[g, (@
g, a a,

e

The hydrogen atom magnetic field equation with the stationary wave is as follows:

i =5 L exp- L)1+ g mlg, (0 - g, ) - L exp- 1 (Feos 0+ dsingy (23-17)
2mu, a, a, a, a, ap ap, 'r

In which:
B 4o’

- N 23.18
P m,c’ 2a +7r2 ( )
And

2
g=—2_ 1% (23.19)
m,c T

The B is the positive constant.

Let us define the constant angle S as follows:
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V4
tan f = — (23.20)
2a
Thus:
sin f=——| (23.21)
40
1+—;
T
cos B = 20 1 (23.22)
r 4o
1+

As we know the electron’s electric field energy is:

U - meczz 4;,(22 (23.23)
sy 7
T
Thus:
23.24
by p2a (2324)
4a°
1+ 3
T
Thus:
U,p=Bcosp (23.25)

As we know, the electron magnetic field energy is:

U o~ M (23.26)
" 4a°
I+—)
Vs
Thus:
23.2
Ugep ! (23.27)
4a’
1+—
T
U,q=Bsinp (2328)
Thus:
E= Ze [iexp(—L){l+pii2[cos(rtw)+cos(r:Vt)]}—Lexp(—L)]l(fsinG—écosg) (23.29)
g, a, a, ok k7a, k7a, ap, a, r
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g-g L exp(~—- ){1+q2—[s1n(r Vt) '(r V’)]}—f xp(——L)] L (7 eos 0 + dsin )
T a, 'r

o e a, a,

Thus:

exp(— L)} ! (7 sin @ — 6 cos B))
-

ap ap

—exp(——)z cos(k

ekl

)Sl(

{7 exp(— 7) - exp(— 7) + q — exp(— —)Z —[cos( )]} (Fcos @+ fsin 0)

”,Uo a. ap a.

Let us define the function f(r) as:

£ =L exp(-") - L exp(--)
a a

e e aP aP

Thus:

— eXID(— *)z

a, ok

) sm(

—cos( )} (r cos 0+ Osin o)

The free electron electric field total energy is:

2
e

U,=

3
TEya,

As we know, the electric field energy density is:

u, =%(90E2
Thus
1 e* 1 r Vit
e=3 i 7{% (—i)—*exp(—*ﬁp*exp(—;);*COS(k al))COS(kzae)}z
1 e2 r Ve .,
=— —{f(r)+ —ex e cos cos
. {f() P p( 6); (kza) (kzae)}
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(23.32)

(23.33)

(23.34)

(23.35)

(23.36)

(23.37)

(23.38)

(23.39)

(23.40)



Uy = ——— {f(r) +2/(p— eXp(— *)Z -~ COS(

27[ a, =k ’a

)cos(klz/t )+

e e

vt o,
ae)COS(kza N}

12
e27r

{f(r) +2f(r)p—exp6 )Z cos%)coskz%)+

oy @ Vi vt
+4p iexpe )[Z 2005\ > )cos\nza )cos\mza )COS\nza s

2
ag CZL mnl

L’ e e e

— {f(r) a U, +2pf(r)U, expt— )Z e COSH)COSHH

e k=1

4£iex pE— )[z > 2cos%)cos%)cos(—)cos%)]}

e mn=l

cos(](—)cos(](—) +

4£fexp(—)[z e 2cos%)cos%)cos%)cos%)]}

e m,n=|

The free electron magnetic field energy is:

2
U, =—%
7ya,

As we know, the magnetic field energy density is:

u, =5y0H
Thus
u, =%7[ ;0 —{f(r)+q—e><p(——e)kz;—005( )sin(-3 e)}‘
1 2
ty =55 = —{[f(r)] +2qf(r)—eXp(——e)kZ;— cos(- sinGs L)

+q2ai2exp(_2_)z cos( >sm( )]}

e
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(23.44)

(23.45)

(23.46)

(23.47)

(23.48)



u, =;ﬂ - SO +2qf<r)fexp<—z);fcos(i) sin(kf;w
+4q° —exp(——)z cos( )cos( )sm( i ) sin( Iz/t )} (23.49)
a, ma- \m’n a, a, ae n-a,
cos( )sm( )
cos( : )cos( )sm( n ) sin( 12/t )} (23.50)
‘a n-a

e em"l e e e e

As we know the electromagnetic field energy density is as follows:

w=tsm+ 1y w2 (23.51)
2 2
Thus:
ae ik
B 1 2r &1 r r Ve 1 1
+4 —expt— cos( cosf cosf— (——— (23.52)
c’a, pt a, )mél m'n’ \mzae) \nzae) ake(m2 n 2

From here we can see that the hydrogen atom’s electromagnetic energy spectrum
frequency has the following format:

Vo1 1
n =a—(—2——2) (23.53)

As we already know, the hydrogen atom’s wave velocity is as follows:

V=ca (23.54)
Thus
ca, 1 1

For the electromagnetic field wave in a vacuum, the wavelength is as follows:

1 a1 1
— = (- (23.56)
a m n

nm

As we know from (9.15), we have:
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4 2
a, = ay(1+-2-)
T

Thus:

L_a 11
A a 4a* "m* n?
nm 0(1+ 7[2)

Compared with the hydrogen atom spectrum formula (23.5), we can get:

R, =2
a(’
Then:
a
R, = e
a
a, (1 + 72)
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Chapter

24

In our book, we make an assumption that all the particles, electrons, protons
and neutrons have electromagnetic origin.

Time-space and energy-momentum

We know all the material was made by the molecules, the molecule was
consisted of atoms, the atom consists of electrons, protons and neutrons, and so all
material has electromagnetic origin.

Electric charge and magnetic charge are the most basic properties of
electromagnetic field.

Based on the charge distribution, we can get field distribution.
Based on the field distribution, we can get field velocity.

The charge moves according to the field velocity.

Because of the velocity, the charge distribution keeps changing.
Because the charge distribution changes, the field then changes.
Because the field changes, then the field velocity changes.

S e

Based on the distribution of electric charge and magnetic charge in space, and
according the Gauss Law for electric field and magnetic field, we can get the electric
field and magnetic field distribution.

And then, based on the electric field and magnetic field space distributions, we
can get the electromagnetic field velocity, and then all of the electric and magnetic
charges will move according to the electromagnetic field velocity.

The electric charge and magnetic charge space distribution will keep changing,
then the electric field and magnetic field will keep changing, and then electromagnetic
field velocity will also keep changing.

However the change happened, the electric charge and magnetic charge will
keep conserved.

All the basic particles include electrons, protons and neutrons, they are no
longer regarded as point-like particles, but are instead considered to have a spherical
electromagnetic field with the continuum distribution of electric charge and magnetic
charge.
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The key relationship between time-space and energy-momentum is the
velocity of the electromagnetic field.

As we know, the electromagnetic field velocity has the following relationship
with energy-momentum:

V= (24.1)

D |

In which ¢ p ’ is the electromagnetic field momentum density, and ‘ p ’ is the
electromagnetic field mass density.

As we know, the electromagnetic field velocity has the following relationship
with time-space:

}

= d
=2 24.2
0 (24.2)

We have the following symmetrical relationship between time-space and energy-
momentum:

Field Velocity
Time T Energy E
Space R Momentum P
Absolute time S Rest energy U

The key between these relations is electromagnetic field velocity.
As we know, the rest energy density ‘u,’ is defined as:
us =u’—c’p’ (24.3)

In which the electromagnetic field energy density ‘u’ is:

2

u=pc
(24.4)
In which ¢ p’ is the electromagnetic field mass density
U, = p,c’ (24.5)
In which ° p,’ is the electromagnetic field rest mass density, thus:
.1 U,y
p=— e (24.6)
¢ Nf-v /
CZ
Thus:
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—

PV (24.7)
- v7
CZ

The symmetrical part of the rest energy is the absolute time ‘s,” which is defined as:

p=

c’ds® =cidt> —dr® (24.8)
Thus the time ‘t’ and the absolute time ‘s’ have following relationship:

_ds (24.9)
ﬁ
CZ

dt=
1—

The energy always has positive value, and the time is always one-directional.
Time flows from the past into the future along with the direction of field velocity, the
arrow of time is the direction of the field velocity.
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Appendix A

The gamma distribution function:

1 V' k-1 _r
f(hk,a)—m(z) exp( a)

In which k is the shape parameter, a is the scale parameter, I" is the gamma function
which has the formula:

(k)= [r*e” dr
0
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Appendix B

The cumulative gamma distribution:

Frha) = 1-exp DY Ly
Y P a k! a
For example, when h=1, thus:

f(rla)=1-(1+2)exp(-2)
a a
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Appendix C
Zeta-exponential function

As we know the exponential function is:

o0

xn
= n!

The Riemann Zeta function is:

o0

Combine the exponential function and zeta function, and then we can have a new
function, which we temporally called the zeta-exponential function as follows:

o0

g, (x)= Z 5[2(n+M)]

n=0

Then we will get:

n

gm (x) = z z z k2n+2m

o n! o
Thus:
21 & x" 1
x =
Thus:
o0 o0 1
g, (=) — Z— )
k=1 0 '
Thus:

o0

0 ()= 2 enp(

Thus, we have:

o0

1 . X
gm (lx) Z k2m exp(lk_z

The above equation is the Fourier serial of the complex zeta-exponential function.
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o0

Relg, (in)]= Y —

2m
k=1 k

o0

. 1 . x
Im[g,, (ix)] = Z —sin(—
ok k

As we know:

2,00 = X s exp

k=1

Thus:

[, (0] =g ()

As we know for the exponential function, we have:
exp(ix) = cos x +isin x

Re[exp(ix)] = cosx

Im[exp(ix)] = sinx

Similar to the exponential function, the complex zeta-exponential function has the
following relationship:

gm(ix)zi ! [cos(kiz)ﬂsin(kiz)]

= k2m
g, (ix) = )]+Z[Z - Sln(
o k 1k

. > X
Re[g,, ()] = Y\ cos(-5
k=1 k
Im[ (ix)]—i L gin(X
ng = k2m k2

v —
form=1and x= , thus we have

r—vt = |
gl(l ):[z 2
o k

a

]+ z[z sm(
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r+vt

form=1and x= , thus we have

a

r+vt r+vt r+vt

< ~ 1 .
)=[;FCOS( En )]H[Z‘Psm( el

g (i
a
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Appendix D
Spherical wave equation:

In the spherical polar coordinate axes (7,0, ¢), the gradient V is:

vepl o, L 50
or r 060 rsin@ 0¢

The spherical wave equation is:

_1 %%
V' ot

Viy

Where ‘v’ is the speed of the wave which propagate through radial direction, for the
special case in which it has angular symmetry (not dependent on the &,¢ ), then we
will have the following wave equation:

ot ror Vot

Oy 20y _10%

Thus:

O'(ry) _ 20 (ry)
ot* or?

Thus, we have the following general solution:

r— r+vt

Vt) + E exp(i )
r

A
y =—exp(i
r a

Thus:

v = éexp[i(kr —-wt)]+ Eexp[z'(kr + wt)]
r r

In which
1
k=—
a

Where k is the wave number.
w=—
a

Where w is the angular frequency.
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Appendix E
The gradient V in spherical coordinate is:

veplilgo 1 50
or r 060 vrsin@ 0¢

In which the spherical polar coordinate axes is (7, €, ¢).
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antiparticles, 28
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hydromagnetic equation, 30
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impedance, 19, 61, 63, 64, 65, 66, 67,
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incoming, 64, 70, 71

Integer Quantum Hall effect, 61, 62
intrinsic electric field, 5, 52

intrinsic magnetic field, 5

intrinsic electromagnetic field, 5
intrinsic angular momentum, 5
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inversely, 67
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56,79

material, 6, 78

maxwell electromagnetic wave, 34
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nonlinear, 28, 76
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opposite, 64, 66, 69
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originates, 6
oscillation, 64
oscillator, 76
outgoing, 70, 71

P

particle, 6, 7, 9, 25, 28, 78
perpendicular, 61, 64
physical, 6

planck’s constant, 18
point-like particle, 6, 7, 9, 78
polar coordinates, 7, 85, 86
polar angle, 7

pole, 10, 11, 51, 65, 66, 69
positive, 11, 43, 61, 71, 80
propagate, 63, 85
propagation, 64

properties, 16, 24, 78
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quantised, 10
quantization, 11
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R
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reflect, 64

reflection, 64

resistance, 61, 68

rest energy, 5, 79

rest mass, 79

reversion, 63

Riemann zeta function, 76, 83
rotating, 5, 19, 20, 28, 76

rydberg constant, 69

S

self-energy, 5, 6, 25
singularity, 10, 25
sound wave, 63, 64, 65



space, 7,9, 78, 79
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speed, 27, 63, 65, 68, 70
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spinning, 5, 6, 28

standing wave, 64, 69, 70

stationary wave, 6, 71

symmetrical, 79

symmetry, 11, 85

T

temperature, 61

time, 79, 80

time-space, 78, 79
transmission line, 63, 64
transverse wave, 64
travels, 64
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What is the electron spin?

The electron has both intrinsic electric field and intrinsic magnetic field.
The electron’s intrinsic electromagnetic field has both energy and angular
momentum.

The electron spin is the electron’s electromagnetic field angular
momentum.

The electron’s self-energy is the electron’s electromagnetic field energy.
The electron has electromagnetic origin.

The electron is the smallest magnet, oriented in the same direction that
the electron is spinning. The electron’s south pole has one unit positive
magnetic charge ‘g’, the north pole has one unit negative magnetic
charge ‘—g’.

The multiple of electric charge unit ‘e’ and magnetic charge unit ‘g’
equals Planck’s constant ‘h’.

Both the electron’s electric charge and magnetic charge have the
continuum spherical distribution inside the electron.

The electron as whole has one unit negative electric charge ‘e’.

The electron as whole has zero magnetic charge.

All the particles that make up physical materials include electrons,
protons and neutrons have electromagnetic origin. Thus all materials have

electromagnetic origin.
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